bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926477. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

Evolution and variation of 2019-novel coronavirus

Chenglong Xiong^{1, 2}, Lufang Jiang^{1, 2}, Yue Chen³, Qingwu Jiang^{1, 2*}

¹ Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai 200032, China

² School of Public Health, Fudan University, Key Laboratory of Public Health Safety,

Ministry of Education, Shanghai 200032, China

³ School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada

1

*Correspondence to: jiangqw@fudan.edu.cn (Q. J.)

Running title: Underdetection of 2019-nCoV infection

Abstract (365 words)

Background: The current outbreak caused by novel coronavirus (2019-nCoV) in China has become a worldwide concern. As of 28 January 2020, there were 4631 confirmed cases and 106 deaths, and 11 countries or regions were affected.

Methods: We downloaded the genomes of 2019-nCoVs and similar isolates from the Global Initiative on Sharing Avian Influenza Database (GISAID and nucleotide database of the National Center for Biotechnology Information (NCBI). Lasergene 7.0 and MEGA 6.0 softwares were used to calculate genetic distances of the sequences, to construct phylogenetic trees, and to align amino acid sequences. Bayesian coalescent phylogenetic analysis, implemented in the BEAST software package, was used to calculate the molecular clock related characteristics such as the nucleotide substitution rate and the most recent common ancestor (tMRCA) of 2019-nCoVs.

Results: An isolate numbered EPI_ISL_403928 showed different phylogenetic trees and genetic distances of the whole length genome, the coding sequences (CDS) of ployprotein (P), spike protein (S), and nucleoprotein (N) from other 2019-nCoVs. There are 22, 4, 2 variations in P, S, and N at the level of amino acid residues. The nucleotide substitution rates from high to low are 1.05×10^{-2} (nucleotide substitutions/site/year, with 95% HPD interval being 6.27×10^{-4} to 2.72×10^{-2}) for N, 5.34×10^{-3} (5.10×10^{-4} , 1.28×10^{-2}) for S, 1.69×10^{-3} (3.94×10^{-4} , 3.60×10^{-3}) for P, 1.65×10^{-3} (4.47×10^{-4} , 3.24×10^{-3}) for the whole genome, respectively. At this nucleotide substitution rate, the most recent common ancestor (tMRCA) of 2019-nCoVs appeared about 0.253-0.594 year before the epidemic.

Conclusion: Our analysis suggests that at least two different viral strains of 2019-nCoV are involved in this outbreak that might occur a few months earlier before it was officially reported.

Keywords: 2019-nCoV; evolution; variation; recessive infection; underdetection

Background

Coronaviruses (CoV) (order Nidovirales, family Coronaviridae) are enveloped, positive stranded RNA viruses, which includes 4 genera *Alphacoronavirus* (α -CoV), *Betacoronavirus* (β -CoV), *Gammacoronavirus* (γ -CoV), and *Deltacoronavirus* (δ -CoV) [1,2]. Since 1960, six different CoVs have been identified and two epidemic CoVs have emerged in human during the last 2 decades [3]. Severe acute respiratory syndrome (SARS)-CoV in 2002-2003 and the Middle East respiratory syndrome (MERS)-CoV in 2012-2015 both belong to the genus *Betacoronavirus* [4,5].

On 31 December 2019, Wuhan City of Hubei Province reported a number of cases of pneumonia related to a local seafood market. The main clinical manifestation of these cases was fever, a few patients had dyspnea, and the chest films showed double-lung infiltrative lesions [6]. The Chinese authorities identified a new type of coronavirus (novel coronavirus, 2019-nCoV), which was isolated on 7 January 2020, and on 11 and 12 January, the World Health Organization (WHO) received further detailed information from the National Health Commission about the outbreak. As of 28 January 2020, there were 4631 confirmed cases and 106 deaths, and had affected 11 countries or regions [7,8].

All human CoVs may be of zoonotic origin, and may indeed originate from bats [9]. To discover the evolutionary history of the viruses, we analyzed the genomes of 2019-nCoVs, compared their variations in both nucleotide and amino acid sequence levels, and determined their molecular clock related characteristics such as the nucleotide substitution rate and the most recent common ancestor. We tried to explore the origin and evolution mechanism of the viruses causing the epidemic, and to provide theoretical basis for early warning of similar events caused by β -CoVs in the future.

Methods

Genomes collection

Complete Genomes of 2019-nCoVs were downloaded from the Global Initiative on Sharing Avian Influenza Database (GISAID, <u>http://platform.gisaid.org/epi3/frontend</u>) on January 24, 2020. The SARS-CoV in 2002-2003 (GenBank accession: NC_004718) and two Bat SARS-like coronavirus isolates bat-SL-CoVZC45 (GenBank accession: MG772933) and bat-SL-CoVZXC21 (GenBank accession: MG772934) were also downloaded for serving as the reference sequences. The former is a reference sequence (RefSeq) of pathogens that have caused major epidemics [10], while the latter two are the wild strains with the highest identity with 2019-nCoVs [11]. Moreover, unlike GISAID, the three sequences downloaded from GenBank have detailed comments, which can be used to investigate the coding sequences (CDS) of different proteins.

Phylogenetic tree construction and amino acid residues alignment

The CLUSTAL W profile alignment option was used to align the whole genomes. On this basis, the coding sequence (CDS) of ployprotein (P, ORF1ab), spike protein (S), nucleoprotein (N), matrix protein (M) and small envelope protein (E) in the genomes are trimmed out from each reference sequence, since they are very important enzymatic or structural proteins in coronavirus [10,12]. Pairwise distances were calculated by using the DNADIST program of the PHYLIP package and by using the Kimura two-parameter model of nucleotide substitution. Phylogenetic trees were constructed by using neighbour-joining (NJ) methods. All phylogenetic trees were inferred by using MEGA6 software [13]. The deduced amino acid residues of these 5 proteins were compared by Lasergene 7 program again [14].

Computation of mean evolutionary rate and the most recent common ancestor (tMRCA)

Bayesian coalescent phylogenetic analysis, implemented in the BEAST v1.6.1 (http://beast.bio.ed.ac.uk) software package, was used to determine the molecular evolutionary rate [15]. Because the viral genomes sequenced in this outbreak are relatively concentrated in time, no reference sequence other than the outbreak has been included.

GTR+G+I multiple models were chosen as the nucleotide substitution and site heterogeneity models. Each analyses consisting of 10,000,000 generations under the

strict clock model because the sequence identity in each nexus matrix is very high. Bayesian skyline population size was set as demographic models for each species-specific data set. Model selection was based on an analysis of marginal likelihoods, calculated in Tracer version 1.5. Effective sample sizes (ESSs) of at least 200 were considered appropriate and the results were considered valid. For tMRCA analysis, the collection dates of 2019-nCoVs were calculated by using the following formula, and the values of date were accepted by Tipdate time collector:

 $[(month-1)\times 30 + date]/360 + Year (i.e., 2019 or 2020)$ (1)

Results

Phylogenetic trees and genetic distances

As of January 24, 2020, there were 26 viral genomes of 2019-nCoVs. After excluding one with incomplete information (EPI_ISL_402125) and another excessively short one (EPI_ISL_402126), a total of 24 viral genomes were included in the follow-up study.

The phylogenetic trees showed that all isolates of 2019-nCoVs automatically clustered on whole genome and CDS of five proteins, indicating their close relationship. However, in the whole genome and the CDS of P, S and N, an isolate (EPI_ISL_403928) is different from other 23 (**Fig 1**). This isolate was derived from a 61-year-old male patient in Wuhan. The sample was collected on 1 January, 2020, and the possibility of false sequencing was ruled out. The genetic distances of genomes show results consistent to the phylogenetic trees. The mean genetic distance is 0.00021±0.00002 for all the isolates but only 0.00010±0.00001 after an exclusion of EPI_ISL_403928. The mean genetic distance between EPI_ISL_403928 and the other 23 is 0.00146±0.00018. The CDS of P, S and N show a similar difference between EPI_403928 and the group of 23 (**Tab 1**). All isolates of 2019-nCoV however, have the same CDS of M and E.

Amino acid residues alignment

CDS of polyprotein encodes many proteins, mainly soluble enzymes, which play an

important role in the infection cycle of a virus. Its precursor contained the most amino acid residues, up to 7096. There are 22 variations between EPI_ISL_403928 and the other 2019-nCoVs (Fig 2).

Two important structural proteins, S and N, are composed of 1273 and 419 amino acid residues, respectively. When compared with the other 2019-nCoVs, EPI_ISL_403928 has four variations in S protein (T572I, G799V, F800C and N801K) and two variations in N protein (A414C and D415I). M and E proteins show no variation so far.

Evolutionary rate and tMRCA

Nucleotide substitution rates of the whole genome and CDS for different proteins differed from each other (**Tab 2**). The substitution rate from high to low was 1.05×10^{-2} (nucleotide substitutions/site/year, with 95% HPD interval being 6.27×10^{-4} to 2.72×10^{-2} , similarly hereinafter) for N, 5.34×10^{-3} (5.10×10^{-4} , 1.28×10^{-2}) for S, 1.69×10^{-3} (3.94×10^{-4} , 3.60×10^{-3}) for P, and 1.65×10^{-3} (4.47×10^{-4} , 3.24×10^{-3}) for whole genome. It is estimated that the most recent common ancestor (tMRCA) of 2019-nCoVs existed about 0.253-0.594 year (somewhat, 91-214 days) ago, or their evolutionary divergence appeared 91-214 days ago. However, M and E demonstrated no divergences up to this point.

Discussion

In this study, we analyzed the whole genome and the CDS of several key proteins of 2019-nCoVs. 2019-nCoVs are the pathogens that cause severe pneumonia in human in Wuhan recently. It is found one of the isolates (EPI_ISL_403928) has obvious variations in whole genome and CDS of P, S and N proteins, which result in the substitution of several amino acids.

We also analyzed the nucleotide substitution rate in the whole genome level and the CDS of some proteins during their evolution process. There is no variation in CDS of M and E proteins. CDS of N protein has the highest rate of base substitution (1.05×10^{-2})

substitutions/site/year) and whole genome has the lowest $(1.65 \times 10^{-3}$ substitutions/site/year). The divergence time of the viruses deduced is about 91-214 days before the submission of the first isolate. Their earliest sampling time was 8 December, 2019, and 91-214 days before that day, the viruses infected human or host animals and began to diverge in the evolution process. It is not clear if the viruses began to mutate before or after infecting human beings. There is also a possibility there were two strains evolved coincidentally, one for human and one for host animals that evolved more adaptive to human and then infected human. Our analysis indicates that the outbreak occurred a few months earlier than it was officially reported, and there might be recessive infection and underdetection in the population. Therefore, the seafood market in Wuhan, which is believed to be the first spot of the outbreak, may or may not be the case.

Human recessive infection of *Betacoronavirus* does exist. For example, it occurs in the population for HKU1, another member of β -CoVs. HKU1 is related to a variety of children's and adult diseases and distributed globally [16]. In the United States, 0.5% HKU1 positive rate was detected in 15 287 respiratory samples during 2009-2013 [17]; in Kenya, Africa, 2.1% of the 417 respiratory samples collected in 2009-2012 were infected by HKU1 [18]; in Southeast Asia, the positive rate of HKU1 was 1.1% in 2060 adult acute respiratory samples from Malaysia in 2012-2013 [19]. The positive detection rate was 1.9% in Japan and 4342 from 2010 to 2013, and 2.5% in Korea [20,21]. Recessive HKU1 infection was common and many patients with HKU1 infection were found in routine examinations [24-25]. Cases of recessive 2019-nCoV infection have also been reported in succession. Recessive infection is one of the reasons for underdetection.

All human CoVs (HCoVs) is mainly of zoonotic origin, and most likely originate from bats [9]. The common scenario of CoV evolution then involves past transitions into intermediate hosts such as livestock, which have closer interaction with human and may carry a diversity of viruses including variants directly related to ancestral strains [26,27]. For this outbreak, there is evidence for specific wild animals being intermediate hosts in the seafood market in Wuhan, similar to the outbreak of SARS-CoV in Guangdong Province of China in 2002-2003 [28]. People engaged in

7

hunting and management of such wild animals are at high risk of infection, likely live in mountain or rural areas and are more likely to be undetected when having such an infection for various reasons.

Conclusions

Our study suggests that there are at least two different viral strains of 2019-nCoV infecting human and human infection occurred a few months earlier than the outbreak being officially announced. Recessive infection and underdetection can cause a delay in response. The seafood market in Wuhan may or may not be the first spot of this outbreak. A large number of viruses carried by wild animals bring many uncertainties to the emerging infectious diseases (EIDs). In order to effectively control these EIDs, it is necessary to strengthen interdisciplinary cooperation and communication among human, animal and environmental health investigators based on the One Health concept, so as to detect and identify pathogens as early as possible, find patients and report epidemics, and effectively control the spread of EIDs through timely isolation and prevention measures and observation of close contacts.

List of abbreviations

CoVs : Coronaviruses 2019-nCoV: 2019-novel coronavirus SARS-CoV : severe acute respiratory syndrome coronavirus MERS-CoV : Middle East respiratory syndrome coronavirus CDS: coding sequence tMRCA: the most recent common ancestor GISAID : the Global Initiative on Sharing Avian Influenza Database ESSs : Effective sample sizes

Declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This study is a serial of phylogenetic analyses based on large scale of existing gene sequences; all these sequences can be searched and downloaded from two public databases, the NCBI Influenza Virus Sequence Database and the Global Initiative on Sharing Avian Influenza Data (GISAID) database. No institutional review board approval was required from the research ethics committee of School of Public Health, Fudan University, and animals' ethics approval was applicable neither.

CONSENT FOR PUBLICATION

All authors have approved publishing this paper in *Infectious Diseases of Poverty*, and there are no patients involved in this study.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926477. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

COMPETING INTERESTS

We declare that we have no conflicts of interest.

FUNDING

This research was funded by the National Natural Science Foundation of China (grant No. 81872673), the National Key Research and Development Program of China (grant No. 2017YFC1200203).

AUTHORS' CONTRIBUTIONS

All authors made significant contributions to the conception, data acquisition, analysis and drafting of this manuscript and approve the final version submitted. C. X. and Q. J. conceived and designed the project. Y. C. and Q. J. developed the research question. C. X. and L. J. collected the sequences and calculated them. All members of the group contributed to the analysis design and interpretation of the data.

ACKNOWLEDGEMENTS

We acknowledge the contributions of scientists and researchers from all over the world for depositing the genomic sequences of influenza viruses in the Global Initiative on Sharing All Influenza Data (GISAID) EpiFlu[™] and the nucleotide database of the National Center for Biotechnology Information (NCBI). We acknowledge these two databases for permitting us to use these genomic sequences freely and conveniently.

REFERENCES

1. Wong ACP, Li X, Lau SKP, Woo PCY. Global epidemiology of bat coronaviruses. Viruses. 2019; 11: pii: E174.

2. International Committee on Taxonomy of Viruses (ICTV). Taxonomy History: Cornidovirineae.

https://talk.ictvonline.org/taxonomy/p/taxonomy-history?taxnode_id=20186105

10

(accessed on 2 January 2020).

3. Corman VM, Muth D, Niemeyer D, *et al.* Hosts and Sources of Endemic Human Coronaviruses. Adv Virus Res. 2018; 100: 163-88.

4. Lau SK, Woo PC, Li KS, *et al.* Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005; 102: 14040-5.

5. Zaki AM, van Boheemen S, Bestebroer TM, *et al.* Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012; 367: 1814-20.

6. Wuhan Health Committee. Unknown viruses causing severe pneumonia. Xinhuanet, http://www.xinhuanet.com/2019-12/31/c_1125409031.htm (accessed on 31 December 2019).

7. China CDC. Report of Wuhan Health Committee on pneumonia caused by new coronavirus.

http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11809/202001/t20200130_21202 9.html. (accessed on 30 January 2020).

 8.
 WHO.
 Disease
 Outbreak
 News.

 https://www.who.int/csr/don/21-january-2020-novel-coronavirus-republic-of-korea-ex
 -china/en/. (accessed on 21 January 2020).

9. Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014; 101: 45-56.

10. Snijder EJ, Bredenbeek PJ, Dobbe JC, *et al.* Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. U J Mol Biol. 2003; 331: 991-1004.

11. Wu F, Zhao S, Yu B, *et al.* Complete genome characterisation of a novel coronavirus 5 associated with severe human respiratory disease in Wuhan, China. bioRxiv preprint first posted online Jan. 25, 2020. http://dx.doi.org/10.1101/2020.01.24.919183 (accessed on 30 January 2020).

12. He R, Dobie F, Ballantine M, *et al.* Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun. 2004; 316: 476-83.

13. Tamura K, Stecher G, Peterson D, et al. MEGA6: Molecular Evolutionary 11

Genetics Analysis version 6.0. Molecular Biology and Evolution. 2013; 30: 2725-9.

14. Burland TG. DNASTAR's Lasergene sequence analysis software. Methods Mol Biol. 2000; 132: 71-91.

15. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012; (8): 1969-73.

16. Woo PC, Lau SK, Chu CM, *et al.* Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005; 79: 884-95.

17. Dominguez SR, Shrivastava S, Berglund A, *et al.* Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses. J Gen Virol. 2014; 95(Pt 4): 836-48.

18. Sipulwa LA, Ongus JR, Coldren RL, Bulimo WD. Molecular characterization of human coronaviruses and their circulation dynamics in Kenya, 2009-2012. Virol J. 2016; 13: 18.

19. Al-Khannaq MN, Ng KT, Oong XY, Pang YK, *et al.* Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia. Virol J. 2016; 13: 33.

20. Matoba Y, Abiko C, Ikeda T, *et al.* Detection of the human coronavirus 229E, HKU1, NL63, and OC43 between 2010 and 2013 in Yamagata, Japan. Jpn J Infect Dis. 2015; 68: 138-41.

21. Lee WJ, Chung YS, Yoon HS, *et al.* Prevalence and molecular epidemiology of human coronavirus HKU1 in patients with acute respiratory illness. J Med Virol. 2013; 85: 309-14.

22. Huang C, Wang Y, Li X, *et al.* Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Jan 24. pii: S0140-6736(20)30183-5.

23. Chan JF, Yuan S, Kok KH, *et al.* A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020 Jan 24. pii: S0140-6736(20)30154-9.

24. China Central Television Network (CCTN). The biggest threat is latent infection.

http://news.cctv.com/2020/01/29/ARTIvq0RFgb3Qd4vj7uaxQH4200129.shtml

(accessed on 29 January 2020).

25. Guangming Daily. Pneumonia caused by new coronavirus. http://news.gmw.cn/2020-01/27/content_33510113.htm (accessed on 27 January 2020).

26. de Groot RJ, Baker SC, Baric R, *et al.* (Eds.), Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Academic Press, London, pp. 806-820.

27. Vijgen L, Keyaerts E, Lemey P, *et al.* Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43. J Virol. 2016; 80: 7270-4.

28. Wang M, Yan M, Xu H, *et al.* SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis. 2005; 11: 1860-5.

	Overall mean d.*	With	in mean Gp d.	Between Gp mean d.		
		Gp# 1	Gp 2			
Genome	0.00021 ± 0.00002	0	0.00010 ± 0.00001	0.00146±0.00018		
Р	0.00018 ± 0.00003	0	0.00007 ± 0.00002	0.00140 ± 0.00023		
S	0.00024 ± 0.00008	0	0.00011 ± 0.00006	0.00162 ± 0.00062		
Ν	0.00051 ± 0.00020	0	0.00019 ± 0.00018	0.00407 ± 0.00157		
М	/	/	/	/		
Е	/	/	/	/		

Tab 1. Genetic distances of 24 isolates of 2019-nCoV*

Note: *d., distance;

Gp, group. Gp 1 contains only one genome, EPI_ISL_403928, while Gp 2 contains all sequences except EPI_ISL_403928.

Tab 2. Evolutionary molecular clock related parameters of 24 isolates of 2019-nCoV

		TMR	CA ^a		Nuc	Nucleotide substitution rate				
	mean	HPDL ^b	HPDU ^c	ESS ^d	mean	HPDL	HPDU	ESS		
Genome	0.594	0.198	1.152	417.2	1.65 E-3	4.47 E-4	3.24 E-3	369.2		
Р	0.589	0.161	1.207	371.6	1.69 E-3	3.94 E-4	3.60 E-3	275.0		
S	0.253	6.67 E-2	0.599	345.9	5.34 E-3	5.10 E-4	1.28 E-2	199.7		
Ν	0.325	6.67 E-2	0.846	611.6	1.05 E-2	6.27 E-4	2.72 E-2	447.8		
М	/	/	/	/	/	/	/	/		
Е	/	/	/	/	/	/	/	/		

Note: a, the most recent common ancestor;

b, lower of 95% HPD confidence interval;

c, upper of 95% HPD confidence interval;

d, effective sample sizes.

Figure Captions and Legends

Fig 1. Phylogenetic trees of 24 isolates of 2019-nCoV

a-d correspond to the whole length genome, the coding sequences (CDS) of polyprotein

(P), the spike protein (S), and nucleoprotein (N).

EPI_ISL_403928 is labelled by red dot and line.

Fig 2. Alignment for amino acid residues of polyprotein of 2019-nCoV

Due to the limited space, only 18 isolates of 2019-nCoV were displayed. Four lines at the bottom were used as references, especially the SARS-CoV (accession NC_004718), to show the correspondence sites of amino acid residues between 2019-nCoV and the known *Betacoronavirus*. Also because of the limited space, the same sites of amino acid residues as EPI_ISL_403928 were omitted.

a

BetaCoV/Wuhan/IVDC-HB-04/20|EPIISL402120 BetaCoV/Nonthaburi/61/20|EPIISL403962 BetaCoV/Nonthaburi/74/20|EPIISL403963 BetaCoV/Wuhan/IPBCAMS-WH-04/19|EPIISL403929 BetaCoV/Wuhan/IVDC-HB-01/19|EPIISL402119 BetaCoV/Wuhan/WIV04/19|EPIISL402124 BetaCoV/Wuhan/WIV06/19|EPIISL402129 BetaCoV/Zhejiang/WZ-02/20|EPIISL404228 BetaCoV/Guangdong/20SF014/20|EPIISL403934 BetaCoV/Guangdong/20SF040/20|EPIISL403937 BetaCoV/Guangdong/20SF028/20|EPIISL403936 BetaCoV/Wuhan/HBCDC-HB-01/19|EPIISL402132 BetaCoV/Wuhan/IPBCAMS-WH-03/19|EPIISL403930 BetaCoV/Zhejiang/WZ-01/20|EPIISL404227 BetaCoV/Wuhan/IVDC-HB-05/19|EPIISL402121 - BetaCoV/Wuhan/WIV02/19|EPIISL402127 BetaCoV/Wuhan/WIV05/19|EPIISL402128 BetaCoV/Wuhan/WIV07/19|EPIISL402130 BetaCoV/Guangdong/20SF025/20IEPIISL403935 BetaCoV/Guangdong/20SF013/20|EPIISL403933 100 BetaCoV/Guangdong/20SF012/20|EPIISL403932 BetaCoV/Wuhan/IPBCAMS-WH-01/19|EPIISL402123 BetaCoV/Wuhan/IPBCAMS-WH-02/19|EPIISL403931 BetaCoV/Wuhan/IPBCAMS-WH-05/20|EPIISL403928

0.0001

BetaCoV/Zhejiang/WZ-02/20|EPIISL404228 BetaCoV/Zhejiang/WZ-01/20|EPIISL404227 BetaCoV/Wuhan/WIV07/19|EPIISL402130 BetaCoV/Wuhan/WIV02/19|EPIISL402127 BetaCoV/Wuhan/HBCDC-HB-01/19|EPIISL402132 BetaCoV/Guangdong/20SF040/20|EPIISL403937 63 BetaCoV/Guangdong/20SF028/20|EPIISL403936 BetaCoV/Guangdong/20SF014/20|EPIISL403934 BetaCoV/Wuhan/WIV06/19|EPIISL402129 BetaCoV/Wuhan/WIV05/19|EPIISL402128 BetaCoV/Wuhan/WIV04/19|EPIISL402124 BetaCoV/Wuhan/IVDC-HB-05/19|EPIISL402121 BetaCoV/Wuhan/IVDC-HB-04/20|EPIISL402120 BetaCoV/Wuhan/IVDC-HB-01/19|EPIISL402119 BetaCoV/Wuhan/IPBCAMS-WH-04/19|EPIISL403929 BetaCoV/Wuhan/IPBCAMS-WH-03/19|EPIISL403930 BetaCoV/Wuhan/IPBCAMS-WH-02/19|EPIISL403931 BetaCoV/Wuhan/IPBCAMS-WH-01/19|EPIISL402123 BetaCoV/Nonthaburi/74/20|EPIISL403963 BetaCoV/Nonthaburi/61/20|EPIISL403962 BetaCoV/Guangdong/20SF025/20IEPIISL403935 BetaCoV/Guangdong/20SF013/20|EPIISL403933 BetaCoV/Guangdong/20SF012/20|EPIISL403932 BetaCoV/Wuhan/IPBCAMS-WH-05/20|EPIISL403928

BetaCoV/Wuhan/IVDC-HB-04/20|EPIISL402120 BetaCoV/Guangdong/20SF014/20|EPIISL403934 BetaCoV/Guangdong/20SF028/20|EPIISL403936 BetaCoV/Guangdong/20SF040/20|EPIISL403937 BetaCoV/Nonthaburi/61/20|EPIISL403962 h BetaCoV/Nonthaburi/74/20|EPIISL403963 BetaCoV/Wuhan/HBCDC-HB-01/19|EPIISL402132 BetaCoV/Wuhan/IPBCAMS-WH-02/19|EPIISL403931 BetaCoV/Wuhan/IPBCAMS-WH-04/19|EPIISL403929 BetaCoV/Wuhan/IVDC-HB-01/19|EPIISL402119 BetaCoV/Wuhan/WIV04/19|EPIISL402124 BetaCoV/Wuhan/WIV06/19IEPIISL402129 BetaCoV/Zhejiang/WZ-02/20|EPIISL404228 BetaCoV/Guangdong/20SF025/20|EPIISL403935 BetaCoV/Guangdong/20SF013/20|EPIISL403933 BetaCoV/Guangdong/20SF012/20|EPIISL403932 BetaCoV/Wuhan/IPBCAMS-WH-03/19|EPIISL403930 BetaCoV/Wuhan/WIV02/19|EPIISL402127 - BetaCoV/Zhejiang/WZ-01/20|EPIISL404227 BetaCoV/Wuhan/IVDC-HB-05/19|EPIISL402121 BetaCoV/Wuhan/WIV07/19|EPIISL402130 BetaCoV/Wuhan/WIV05/19IEPIISL402128 BetaCoV/Wuhan/IPBCAMS-WH-01/19|EPIISL402123 BetaCoV/Wuhan/IPBCAMS-WH-05/20|EPIISL403928

0.0001

0.0005

BetaCoV/Wuhan/IVDC-HB-04/20|EPIISL402120 BetaCoV/Guangdong/20SF014/20|EPIISL403934 BetaCoV/Guangdong/20SF028/20|EPIISL403936 BetaCoV/Guangdong/20SF040/20|EPIISL403937 BetaCoV/Nonthaburi/61/20/EPIISL403962 BetaCoV/Nonthaburi/74/20|EPIISL403963 BetaCoV/Wuhan/HBCDC-HB-01/19|EPIISL402132 BetaCoV/Wuhan/IPBCAMS-WH-01/19|EPIISL402123 BetaCoV/Wuhan/IPBCAMS-WH-02/19|EPIISL403931 BetaCoV/Wuhan/IPBCAMS-WH-03/19|EPIISL403930 BetaCoV/Wuhan/IPBCAMS-WH-04/19|EPIISL403929 BetaCoV/Wuhan/IVDC-HB-01/19|EPIISL402119 BetaCoV/Wuhan/IVDC-HB-05/19|EPIISL402121 BetaCoV/Wuhan/WIV02/19|EPIISL402127 BetaCoV/Wuhan/WIV05/19|EPIISL402128 BetaCoV/Wuhan/WIV07/19|EPIISL402130 BetaCoV/Zhejiang/WZ-02/20|EPIISL404228 BetaCoV/Zhejiang/WZ-01/20|EPIISL404227 BetaCoV/Wuhan/WIV06/19|EPIISL402129 BetaCoV/Wuhan/WIV04/19|EPIISL402124 BetaCoV/Guangdong/20SF025/20|EPIISL403935 BetaCoV/Guangdong/20SF013/20|EPIISL403933 67

BetaCoV/Guangdong/20SF012/20|EPIISL403932
BetaCoV/Wuhan/IPBCAMS-WH-05/20|EPIISL403928

0.0002

Majority	EKQVEQKI AEI	SLI YSTAALG	STCMMCYKRNRA	TRVECTTI	NNTKGSL
	1210	2250	2420	2430	2540
2019 EPI_ISL_402119					
2019 EPI_ISL_402121					
2019 EPI_ISL_402123					
2019 EPI_ISL_402124					
2019 EPI_ISL_402125					
2019 EPI_ISL_402127					
2019 EPI_ISL_402128		S			
2019 EPI_ISL_402129					
2019 EPI_ISL_402130					
2019 EPI_ISL_402132					
2020 EPI_ISL_403928	AK		. S	A.	V
2019 EPI_ISL_403929					
2019 EPI_ISL_403930		T			
2019 EPI_ISL_403931					
2020 EPI_ISL_403962					
2020 EPI_ISL_403963					
2020 EPI_ISL_404227	11 20232022 20202 202				
2020 EPI_ISL_404228					
HuB2013	P. VESPEKE. D	V F.			
MG772933_Bat_SLCoV_bat-SL-CoVZC45	V N				
MG772934_Bat_SLCoV_bat-SL-CoVZXC21	G V N				
NC004718_RefSARS-CoV	PRVEAP. QE. P	CV F.			

Majority	DVGDSAEVA	VKMFDAYVNTF	SSTFNV	NAQVAKSHNI	LI EYTDFAT	NTLLFLMSFT	
	2590	2600	2610	2710	2910	3090	
2019 EPI_ISL_402119		and have been	101 10101 10		non process of	i nen present n	
2019 EPI_ISL_402121							
2019 EPI_ISL_402123				S.	ana ana ba a		
2019 EPI_ISL_402124							
2019 EPI_ISL_402125			111111				
2019 EPI_ISL_402127			111111				
2019 EPI_ISL_402128							
2019 EPI_ISL_402129			101 10101 10				
2019 EPI ISL 402130	Α		101 10101 10			1.000 C.000 C	
2019 EPI ISL 402132							
2020 EPI ISL 403928			NI				
2019[EPI ISL 403929			101 10101 10				
2019[EPI_ISL_403930							
2019 EPI ISL 403931							
2020 EPI ISL 403962			101 10101 10				
2020 EPI ISL 403963			101 10101 10				
2020 EPI ISL 404227							
2020 EPI ISL 404228							
HuB2013	T S.	D	. A S.	V	S	A	
MG772933 Bat SLCoV bat-SL-CoVZC45			1111111			F	
MG772934 Bat SLCoV bat-SL-CoVZXC21				H		F	
NC004718_RefSARS-CoV	TS.	D	. A S.	V	S	A	

EVVKPHTESN CVPVTK KVOHMVVKA OADVEWKE PCNLCCAV MOSTVICIT OWELEEELV

Majority	MSFTVLCLT	QWSLFFFLY	FVVKRHTFSN	GYRVIK	KVQHMVVKA	QADVEWKF	RCNL GGAV
	3100	3610	4470	5520	6250	6280	6410
2019 EPI_ISL_402119							
2019 EPI_ISL_402121							
2019 EPI ISL 402123 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926477. The of 2019 EPI ISL 40 author 4 under. It is made available under a	copyright holder for this preprint a CC-BY-NC-ND 4:0 Internationa	(which was not peer-reviewed) is t al license.	he				
2019 EPI_ISL_402125							
2019 EPI_ISL_402127							
2019 EPI_ISL_402128							
2019 EPI_ISL_402129							
2019 EPI_ISL_402130							
2019 EPI_ISL_402132				· · · · <u>-</u> ·			
2020 EPI_ISL_403928		F.	V	P.	. D	R	S
2019 EPI_ISL_403929							
2019 EPI_ISL_403930							
2019 EPI_ISL_403931							
2020 EPI_ISL_403962							
2020 EPI_ISL_403963							
2020 EPI_ISL_404227							
2020 EPI_ISL_404228							
HuB2013	I A	V.	M		S	E	
MG772933_Bat_SLCoV_bat-SL-CoVZC45		V.	M		S	. SE. D	
MG772934_Bat_SLCoV_bat-SL-CoVZXC21	1	V.	M		S	E. D	
NC004718_RefSARS-CoV	I V	V.	M		S	E	

Majority	TRLQSLENVA	<u>AHI STI GV</u>	DI AKKPT	PETYFTQS	QQKL AL GGS	<u>GKPREQI DGYV</u>	KEGQI NDMI
	6460	6560	6570	6650	6970	7020	7070
2019 EPI_ISL_402119							
2019 EPI_ISL_402121						• • • • • • • • • • •	
2019 EPI_ISL_402123						• • • • • • • • • • •	
2019 EPI_ISL_402124						· · · · · · · · · · · · ·	
2019 EPI_ISL_402125							
2019 EPI_ISL_402127					· · · · · · · · · · · · · · · · · · ·	N	
2019 EPI_ISL_402128					R		
2019 EPI_ISL_402129						· · · · · · · · · · · · ·	
2019 EPI_ISL_402130						· · · · · · · · · · · ·	
2019 EPI_ISL_402132			· · · · · · ·			• • • • • • • • • • •	· · <u>-</u> ·
2020 EPI_ISL_403928	KS	A	D	V		• • • • • • • • • • •	E.NHN
2019 EPI_ISL_403929						• • • • • • • • • • •	
2019 EPI_ISL_403930						• • • • • • • • • • •	
2019 EPI_ISL_403931						•••••	
2020 EPI_ISL_403962						• • • • • • • • • • •	
2020 EPI_ISL_403963							· · · · · · · · · ·
2020 EPI_ISL_404227						•••••	
2020 EPI_ISL_404228						· · · · · · · · · · · · · · · · · · ·	
HuB2013		. YV			К	K I	N
MG772933_Bat_SLCoV_bat-SL-CoVZC45	. K	V				•••••	. D
MG772934_Bat_SLCoV_bat-SL-CoVZXC21	. К	V	E			· · · · · · · · · · · · · · · · · · ·	. D
NC004718_RefSARS-CoV		V			К	KI	N